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We propose and study a set of algorithms for discovering community structure in networks—
natural divisions of network nodes into densely connected subgroups. Our algorithms all share two
definitive features: first, they involve iterative removal of edges from the network to split it into
communities, the edges removed being identified using one of a number of possible “betweenness”
measures, and second, these measures are, crucially, recalculated after each removal. We also propose
a measure for the strength of the community structure found by our algorithms, which gives us an
objective metric for choosing the number of communities into which a network should be divided.
We demonstrate that our algorithms are highly effective at discovering community structure in both
computer-generated and real-world network data, and show how they can be used to shed light on
the sometimes dauntingly complex structure of networked systems.

I. INTRODUCTION

Empirical studies and theoretical modeling of networks
have been the subject of a large body of recent research in
statistical physics and applied mathematics [1, 2, 3, 4].
Network ideas have been applied with great success to
topics as diverse as the Internet and the world wide
web [5, 6, 7], epidemiology [8, 9, 10, 11], scientific ci-
tation and collaboration [12, 13], metabolism [14, 15],
and ecosystems [16, 17], to name but a few. A property
that seems to be common to many networks is commu-
nity structure, the division of network nodes into groups
within which the network connections are dense, but be-
tween which they are sparser—see Fig. 1. The ability to
find and analyze such groups can provide invaluable help
in understanding and visualizing the structure of net-
works. In this paper we show how this can be achieved.

The study of community structure in networks has a
long history. It is closely related to the ideas of graph
partitioning in graph theory and computer science, and

FIG. 1: A small network with community structure of the
type considered in this paper. In this case there are three
communities, denoted by the dashed circles, which have dense
internal links but between which there are only a lower density
of external links.

hierarchical clustering in sociology [18, 19]. Before pre-
senting our own findings, it is worth reviewing some of
this preceding work, to understand its achievements and
where it falls short.

Graph partitioning is a problem that arises in, for ex-
ample, parallel computing. Suppose we have a num-
ber n of intercommunicating computer processes, which
we wish to distribute over a number g of computer proces-
sors. Processes do not necessarily need to communicate
with all others, and the pattern of required communica-
tions can be represented by a graph or network in which
the vertices represent processes and edges join process
pairs that need to communicate. The problem is to allo-
cate the processes to processors in such a way as roughly
to balance the load on each processor, while at the same
time minimizing the number of edges that run between
processors, so that the amount of interprocessor commu-
nication (which is normally slow) is minimized. In gen-
eral, finding an exact solution to a partitioning task of
this kind is believed to be an NP-complete problem, mak-
ing it prohibitively difficult to solve for large graphs, but
a wide variety of heuristic algorithms have been devel-
oped that give acceptably good solutions in many cases,
the best known being perhaps the Kernighan–Lin algo-
rithm [20], which runs in time O(n3) on sparse graphs.

A solution to the graph partitioning problem is how-
ever not particularly helpful for analyzing and under-
standing networks in general. If we merely want to find
if and how a given network breaks down into commu-
nities, we probably don’t know how many such com-
munities there are going to be, and there is no reason
why they should be roughly the same size. Furthermore,
the number of inter-community edges needn’t be strictly
minimized either, since more such edges are admissible
between large communities than between small ones.

As far as our goals in this paper are concerned, a more
useful approach is that taken by social network analysis
with the set of techniques known as hierarchical cluster-
ing. These techniques are aimed at discovering natural
divisions of (social) networks into groups, based on var-
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Uncovering the overlapping community structure of
complex networks in nature and society
Gergely Palla1,2, Imre Derényi2, Illés Farkas1 & Tamás Vicsek1,2

Many complex systems in nature and society can be described in
terms of networks capturing the intricate web of connections
among the units they are made of1–4. A key question is how to
interpret the global organization of such networks as the co-
existence of their structural subunits (communities) associated
with more highly interconnected parts. Identifying these a priori
unknown building blocks (such as functionally related proteins5,6,
industrial sectors7 and groups of people8,9) is crucial to the
understanding of the structural and functional properties of
networks. The existing deterministic methods used for large net-
works find separated communities, whereas most of the actual
networks are made of highly overlapping cohesive groups of
nodes. Here we introduce an approach to analysing the main
statistical features of the interwoven sets of overlapping commu-
nities that makes a step towards uncovering the modular structure
of complex systems. After defining a set of new characteristic
quantities for the statistics of communities, we apply an efficient
technique for exploring overlapping communities on a large scale.
We find that overlaps are significant, and the distributions we
introduce reveal universal features of networks. Our studies of
collaboration, word-association and protein interaction graphs
show that the web of communities has non-trivial correlations and
specific scaling properties.
Most real networks typically contain parts in which the nodes

(units) are more highly connected to each other than to the rest of
the network. The sets of such nodes are usually called clusters,
communities, cohesive groups or modules8,10,11–13; they have no
widely accepted, unique definition. In spite of this ambiguity,
the presence of communities in networks is a signature of the
hierarchical nature of complex systems5,14. The existing methods
for finding communities in large networks are useful if the commu-
nity structure is such that it can be interpreted in terms of separated
sets of communities (see Fig. 1b and refs 10, 15, 16–18). However,
most real networks are characterized by well-defined statistics of
overlapping and nested communities. This can be illustrated by the
numerous communities that each of us belongs to, including those
related to our scientific activities or personal life (school, hobby,
family) and so on, as shown in Fig. 1a. Furthermore, members of our
communities have their own communities, resulting in an extremely
complicated web of the communities themselves. This has long been
understood by sociologists19 but has never been studied system-
atically for large networks. Another, biological, example is that a
large fraction of proteins belong to several protein complexes
simultaneously20.
In general, each node i of a network can be characterized by a

membership number mi, which is the number of communities that
the node belongs to. In turn, any two communities a and b can share
sova;b nodes, which we define as the overlap size between these
communities. Naturally, the communities also constitute a network,

with the overlaps being their links. The number of such links of
community a can be called its community degree, dcoma : Finally, the
size scoma of any community a can most naturally be defined as the
number of its nodes. To characterize the community structure of a
large network we introduce the distributions of these four basic
quantities. In particular we focus on their cumulative distribution

LETTERS

Figure 1 | Illustration of the concept of overlapping communities. a, The
black dot in the middle represents either of the authors of this paper, with
several of his communities around. Zooming in on the scientific community
demonstrates the nested and overlapping structure of the communities, and
depicting the cascades of communities starting from some members
exemplifies the interwoven structure of the network of communities.
b, Divisive and agglomerative methods grossly fail to identify the
communities when overlaps are significant. c, An example of overlapping
k-clique communities at k ¼ 4. The yellow community overlaps the blue one
in a single node, whereas it shares two nodes and a link with the green one.
These overlapping regions are emphasized in red. Notice that any k-clique
(complete subgraph of size k) can be reached only from the k-cliques of the
same community through a series of adjacent k-cliques. Two k-cliques are
adjacent if they share k 2 1 nodes.

1Biological Physics Research Group of the Hungarian Academy of Sciences, Pázmány P. stny. 1A, H-1117 Budapest, Hungary. 2Department of Biological Physics, Eötvös University,
Pázmány P. stny. 1A, H-1117 Budapest, Hungary.

Vol 435|9 June 2005|doi:10.1038/nature03607
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© 2005 Nature Publishing Group 
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Communities exist.

Hierarchical structure 
exists.



Hierarchy implies 
disjoint communities.
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Hierarchical structure and the prediction of missing links in networks∗
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Networks have in recent years emerged as an invalu-

able tool for describing and quantifying complex systems

in many branches of science [1, 2, 3]. Recent studies sug-

gest that networks often exhibit hierarchical organization,

where vertices divide into groups that further subdivide

into groups of groups, and so forth over multiple scales.

In many cases these groups are found to correspond to

known functional units, such as ecological niches in food

webs, modules in biochemical networks (protein interac-

tion networks, metabolic networks, or genetic regulatory

networks), or communities in social networks [4, 5, 6, 7].

Here we present a general technique for inferring hierar-

chical structure from network data and demonstrate that

the existence of hierarchy can simultaneously explain and

quantitatively reproduce many commonly observed topo-

logical properties of networks, such as right-skewed de-

gree distributions, high clustering coefficients, and short

path lengths. We further show that knowledge of hier-

archical structure can be used to predict missing connec-

tions in partially known networks with high accuracy, and

for more general network structures than competing tech-

niques [8]. Taken together, our results suggest that hierar-

chy is a central organizing principle of complex networks,

capable of offering insight into many network phenom-

ena.

A great deal of recent work has been devoted to the study

of clustering and community structure in networks [5, 6, 9,

10, 11]. Hierarchical structure goes beyond simple clustering,

however, by explicitly including organization at all scales in

a network simultaneously. Conventionally, hierarchical struc-

ture is represented by a tree or dendrogram in which closely

related pairs of vertices have lowest common ancestors that

are lower in the tree than those of more distantly related

pairs—see Fig. 1. We expect the probability of a connec-

tion between two vertices to depend on their degree of relat-

edness. Structure of this type can be modelled mathematically

using a probabilistic approach in which we endow each inter-

nal node r of the dendrogram with a probability pr and then

connect each pair of vertices for whom r is the lowest com-

mon ancestor independently with probability pr (Fig. 1).

This model, which we call a hierarchical random graph, is

similar in spirit (although different in realization) to the tree-

based models used in some studies of network search and nav-

igation [12, 13]. Like most work on community structure, it

∗This paper was published as Nature 453, 98 – 101 (2008);

doi:10.1038/nature06830.

assumes that communities at each level of organization are

disjoint. Overlapping communities have occasionally been

studied (see, for example [14]) and could be represented using

a more elaborate probabilistic model, but as we discuss below

the present model already captures many of the structural fea-

tures of interest.

Given a dendrogram and a set of probabilities pr, the hi-

erarchical random graph model allows us to generate artifi-

cial networks with a specified hierarchical structure, a proce-

dure that might be useful in certain situations. Our goal here,

however, is a different one. We would like to detect and ana-

lyze the hierarchical structure, if any, of networks in the real

world. We accomplish this by fitting the hierarchical model

to observed network data using the tools of statistical infer-

ence, combining a maximum likelihood approach [15] with

a Monte Carlo sampling algorithm [16] on the space of all

 

FIG. 1: A hierarchical network with structure on many scales and

the corresponding hierarchical random graph. Each internal node r
of the dendrogram is associated with a probability pr that a pair of

vertices in the left and right subtrees of that node are connected. (The

shades of the internal nodes in the figure represent the probabilities.)
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Figure S1: (A) The similarity measure S(eik, ejk) between edges eik and ejk sharing node k.
For this example, |n+(i) ⇤ n+(j)| = 12 and |n+(i) ⌅ n+(j)| = 4, giving S = 1/3. Two simple
cases: (B) an isolated (ka = kb = 1), connected triple (a,c,b) has S = 1/3, while (C) an isolated
triangle has S = 1.

structure can become radically different.) Thus, we neglect the neighbors of the keystone. We

first define the inclusive neighbors of a node i as:

n+(i) � {x | d(i, x) ⇥ 1} (S1)

where d(i, x) is the length of the shortest path between nodes i and x. The set simply contains

the node itself and its neighbors. From this, the similarity S between links can be given by, e.g.,

the Jaccard index (1):

S(eik, ejk) =
|n+(i) ⌅ n+(j)|
|n+(i) ⇤ n+(j)| (S2)

An example illustration of this similarity measure is shown in Fig. S1 (See Sec. S2.1 for gener-

alizations of the similarity).

With this similarity, we use single-linkage hierarchical clustering to find hierarchical com-

munity structures. We use single-linkage mainly due to simplicity and efficiency, which enables

us to apply HLC to large-scale networks. However, it is also possible to use other options such

as complete-linkage or average-linkage clustering. Each link is initially assigned to its own

community; then, at each time step, the pair of links with the largest similarity are chosen and
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Figure S12: Overlapping community structure around Acetyl-CoA in the E. coli metabolic network. Acetyl-CoA plays several
different and important roles in metabolism. Shown are only communities with homogeneity score equal to 1 (all compounds
inside each community share at least one pathway annotation); all other links, including those that contribute to community
structure, are omitted. Pathway annotations shared by all community members are displayed with corresponding colors. The
two communities to the right of Acetyl-CoA are grouped since they share the same exact pathway annotations.

BRUSH
HAIR

GROOM

COMB
HAIRSPRAY

TOOTHPASTE

TOOTHBRUSH

PAINTER

PAINTING

PAINT
BROOM

SWEEP

• SUNSET, SUNRISE, ORANGE
• SUNSET, SUNRISE, RED
• SUNSET, SUNRISE, PRETTY, 

BEAUTIFUL
• SUNSET, SUNRISE, MOON
• SUNSET, SUNRISE, BEACH
• SUNSET, SUNRISE, SUN, DAWN, DUSK, 

SUNSHINE
• SUNSET, SUNRISE, DAWN, DUSK, 

AFTERNOON, EVENING

Figure S13: More link community examples in the word-association network. Top: link communities successfully captures
various meanings of the word BRUSH. Bottom: Link communities captures diverse associations of a word pair SUNRISE-
SUNSET The translated node communities are listed.

16



Link communities around NEWTON from the Word Association networkc
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A

B

YBL041W

proteasome core complex (GO:005839, C)

threonine-type endopeptidase activity (GO:0004298, F)

ubiquitin-dependent protein catabolic process (GO:0006511, P)

proteasome regulatory particle (GO:0005838, C)

ubiquitin-dependent protein catabolic process (GO:0006511, P)

endopeptidase activity (GO:0004175, F)

Proteasome

Core Regulatory particle

Signalosome (GO:0008180, C)

Protein deneddylation (GO:0000338, P)

Figure S16: Another example of overlapping community structure. (A) The subnetwork sur-
rounding protein YBL041W (snowball sampled out to three steps). (B) The communities sur-
rounding YBL041W. Only GO terms with p-value smaller than 10�10 are displayed (with colors
corresponding to their communities). These communities correspond to the core and the regu-
latory particles of the proteasome complex and a community connecting the two.
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Summary
• Networks matter.

• Relationships are fundamental.

LETTERS

Link communities reveal multiscale complexity in

networks
Yong-Yeol Ahn

1,2*, James P. Bagrow
1,2* & Sune Lehmann3,4*

Networks have become a key approach to understanding systems

of interacting objects, unifying the study of diverse phenomena

including biological organisms and human society1–3. One crucial

step when studying the structure and dynamics of networks is to

identify communities4,5: groups of related nodes that correspond

to functional subunits such as protein complexes6,7 or social

spheres8–1
0. Communities in networks often overlap9,10 such that

nodes simultaneously belong to several groups.
Meanwhile, many

networks are known to possess hierarchical organization, wh
ere

communities are recursively grouped into a hierarchical struc-

ture11–13. However, the fact that many real networks have com-

munities with pervasive overlap, where each and every node

belongs to more than one group, has the consequen
ce that a global

hierarchy of nodes cannot capture the
relationships between over-

lapping groups. Here we reinvent communities as groups of links

rather than nodes and show that this unorthodox approach suc-

cessfully reconciles the antagonistic o
rganizing principles of over-

lapping communities and hierarchy. In contrast to the existing

literature, which has entirely focused on grouping nodes, link

communities naturally incorporate overlap while revealing hier-

archical organization. We find relevant link communities in many

networks, including major biological networks such as protein–

protein interaction
6,7,14 and metabolic networks

11,15,16, and show

that a large social network
10,17,18 contains hierarchically organized

community structures spanning inner-city t
o regional scales while

maintaining pervasive overlap. Our results imply that link com-

munities are fundamental building blocks that reveal over
lap and

hierarchical organization in networks to be two aspects of the

same phenomenon.

Although no common definition has been agreed upon, it i
s widely

accepted that a community should have more internal than external

connections
19–24. Counterintuitively, highly overlapping

communities

can have many more external than internal connections (Fig. 1a, b).

Because pervasive overlap breaks even th
is fundamental assumption, a

new approach is needed.

The discovery of hierarchy and community organization has always

been considered a problem of determining the correct membership

(ormemberships) of each node. Notice that, wh
ereas nodes belong to

multiple groups (individuals have families, co-workers and friends;

Fig. 1c), links often exist for one dominant reason (two people are in

the same family, work together or have common interests). Instead of

assuming that a community is a set of nodes withmany links between

them,we consider a community to be a set of closely interrelated lin
ks.

Placing each link in a single context allo
ws us to reveal hierarchical

and overlapping relationships simultaneously. We use hierarchical

clustering with a similarity between links to build a dendrogram

where each leaf is a link from the original network and branches

represent link communities (Fig. 1d, e and Methods). In this den-

drogram, links occupy unique positions whereas nodes naturally

occupy multiple positions, owing to their links. W
e extract link com-

munities at multiple levels by cutting this dendrogram at various

thresholds. Each node inherits all memberships of its links and can

thus belong to multiple, overlapping communities. Even though we

assign only a single membership per link, link communities can also

capture multiple relationships between nodes, because multiple

nodes can simultaneously belong to several communities together.

The link dendrogram provides a rich hierarchy of structure, b
ut to

obtain themost relevant communities it is necessary to determine the

best level at which to cut the tree. For this purpose, we intro
duce a

natural objective function, the partition density, D, based on link

density inside communities; unlike modularity2
0, D does not suffer

from a resolution limit25 (Methods). ComputingD at each level of the

link dendrogram allows us to pick the best level to cut (although

meaningful structure exists above and below that threshold). It is

also possible to optimize D directly. We can now formulate overlap-

ping community discovery as a well-posed optimization problem,

accounting for overlap at every node without penalizing that
nodes

participate in multiple communities.

As an illustrative example, Fig. 1f shows link communities around

the word ‘Newton’ in a network of commonly associated English

words. (See Supplementary Information, section 6, for details on

networks used throughout the text.) The ‘clever, wit’
community is

correctly identified inside the ‘smart/intellect’ community. The

words ‘Newton’ and ‘Gravity’ both belong to the ‘smart/intellect’,

‘weight’ and ‘apple’ communities, illustrating that link communities

capture multiple relationships between nodes. See Supplementary

Information, section 3.6, for further visualizations.

Having unified hierarchy and overlap, we provide quantitative,

real-world evidence that a link-based approach is superior to exist-

ing, node-based approaches. Using data-driven performance mea-

sures, we analyse link communities found at the maximum partition

density in real-world networks, compared with node communities

found by three widely used and successful methods: clique percola-

tion9, greedy modularity optimization26 and Infomap21. Clique per-

colation is the most prominent overlapping community algorithm,

greedy modularity optimization is the most popular modularity-

based20 technique and Infomap is often considered the most accurate

method available27.

We compiled a test group of 11 networks covering many domains

of active research and representing the wide body of available data

(Supplementary Table 2). These networks vary
from small to large,

from sparse to dense, and from those withmodular structure to those

with highly overlapping structure. We highlight a few data sets of

particular scientific importance: The mobile phone network is the

*These authors contributed equally to this work.

1Center for Complex Network Research, Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA.
2Center for Cancer Systems Biology, Dana-Farber

Cancer Institute, Harvard University, Boston, Massachusetts 02215, USA.
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4College of Computer and Information Science, Northeastern University, Boston, Massachusetts 02115, USA.
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Part II



This presentation may contain 
appetizing material.

WARNING



“Tell me what you eat, and I will 
tell you what you are.” 

Jean Anthelme Brillat-Savarin 
(1755-1826)





What do we eat?







We are 
Omnivores.















How do we choose 
what to eat?



Because it’s delicious!



Why is it delicious?



Energy!





Sweet + Fat
= AWESOME



Energy







Why do we eat 
spices?











So, sweet, fatty, 
spicy, and?



Are there any other 
principles 

that transcend individuals 
and cultures?



“Two ingredients taste good together 
if they share flavor compounds”

François Benzi, Heston Blumenthal

Food Pairing Hypothesis

http://en.wikipedia.org/w/index.php?title=Fran%C3%A7ois_Benzi&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Fran%C3%A7ois_Benzi&action=edit&redlink=1




Is it really true?



Systematic approach



Flavor compounds

Ingredients

G. A. Burdock, G. Fenaroli, Fenaroli’s Handbook of Flavor Ingredients (5th ed., CRC Press).



381 ingredients 

1,201 flavor compounds









Network Backbone:

“keeping only the significant links”





fruits

dairy

spices

alcoholic beverages

nuts and seeds

seafoods

meats

herbs

plant derivatives

vegetables

flowers

animal products

plants

cereal

Categories

Prevalence

Shared
compounds
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fruits

dairy

spices

alcoholic beverages

nuts and seeds

seafoods

meats

herbs

plant derivatives

vegetables

flowers

animal products

plants

cereal

Categories

Prevalence

Shared
compounds



How can we know the 
preference of people?



Recipes!



56,498 recipes total



A recipe: a subgraph of the flavor network

black
pepper

garlic

tomato
olive
oil



Food pairing hypothesis

Are these subgraphs (recipes) 
denser than random subgraphs?



black
pepper

garlic

tomato
olive
oil black

pepper

garlic

tomato

oliveoil

black
pepper

garlic

tom
ato

olive
oil

black

pepper

garlic
tomatoolive

oil

Real 
recipe

s

black
pepper

garlic

tomato
olive
oil black

pepper

garlic

tomato

oliveoil

black
pepper

garlic

tom
ato

olive
oil

black

pepper

garlic
tomatoolive

oilRandom 
recipes

(ingredient frequency conserved)



Are these subgraphs (recipes) 
denser than random subgraphs?



Yes & No



Cultural Variation



N
or

th
 A

m
er

ic
an East A

sian



Epicurious vs. Allrecipes Epicurious vs. Menupan Allrecipes vs. Menupan
North American 0.93 N/A N/A

East Asian 0.94 0.79 0.82
Western European 0.92 0.88 0.89

Southern European 0.93 0.83 0.83
Latin American 0.94 0.69 0.74

African 0.89 N/A N/A
Eastern European 0.93 N/A N/A

Middle Eastern 0.87 N/A N/A
Northern European 0.77 N/A N/A

South Asian 0.97 N/A N/A
Southeast Asian 0.92 N/A N/A

Table S3: The correlation of ingredient usage between different datasets. We see that the different datasets broadly
agree on what constitutes a cuisine, at least at a gross level.

-1
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East
Asian

Southern
European

Latin
American

Western
European

North
American

N
sre

al
 - 

N
sra

nd
Epicurious
Allrecipes
Menupan (Korean)

Figure S6: Comparison between different datasets. The results on different datasets qualitatively agree with each other
(except Latin American cuisine). Note that menupan.com is a Korean website.
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Flavor principles

What are the most 
authentic ingredients 

in each cuisine?



East AsianB Number of 
shared compounds

corn
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Rice
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egg

Figure 4: Flavor principles. (A,B) Flavor pyramids for North American and East Asian cuisines. Each flavor pyramid
shows the six most frequently used ingredients (i.e. those with the largest pc

i ), ingredient pairs (largest pc
i j), and ingredient

triplets (largest pc
i jk). The size of the nodes reflects the abundance Pc

i of the ingredient in the recipes of the particular cuisine.
Each color represents the category of the ingredient (see Fig. 2 for the color) and link thickness indicates the number of
shared compounds. (C) The six most authentic ingredients and ingredient pairs used in specific regional cuisine. Node color
represents cuisine and the link weight reflects the relative prevalence pc

i of the ingredient pair.
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Summary

• Again, networks!

• We can study our food culture with 
data-driven & network-based 
approach. 
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Spouses Alice and Bob also work togethera b

The Alice-Bob link was placed in family but both 
home and work relationships are identified

Word Association examples

Figure R3: Can multiple relationships between nodes be found by link communities that assume one membership per link? Yes,
because the nodes themselves “inherit” multiple memberships from their links. Two nodes can belong to many communities together
regardless of the membership of the link between them. (a) A cartoon example. Alice and Bob are found to be related by sharing both
their family and their work. (b) Some real examples found within the full word association network. In the upper example, BLEND and
BLENDER belong to both the ‘fruit juice’ community and the ‘mix’ community. In the bottom example, the link between APPEAR and
REAPPEAR does not even belong to any of the other communities, but the words still belong to several communities together. See also
Fig. R5.
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Figure R4: Membership and overlap statistics for link communities in sparse (Amazon.com, actor) and dense (word association,
metabolic) networks. Shown are the distributions for overlap size sov (top) and membership number m (bottom), as introduced by
Palla et al. [8]. Link communities were found at the maximum partition density D. We find that link communities extract highly
overlapping communities and a higher average number of overlapping memberships for the denser networks than the sparse ones. The
distribution of sov corresponds to the distribution of weights in the community network. Statistics for clique percolation are shown for
comparison (clique size k was chosen from existing literature precedents or else to maximize composite performance).

It’s true that if a group is completely subsumed inside another group, and there are no structural differences
distinguishing this group, such as different connectivity patterns, then link communities will not find the internal
group. No method will find it, because it’s completely invisible (Fig. R5a). However, if the school’s social

R-9



a
c

bg

f
i

h
j

e
dcommunities

students

language class basketball team

project
prob. p

all students are identical
one community, D = 0.750

a b c d e f g h i j

communities

students

language class basketball team

coach separates them
two communities, D = 0.756

a b c d e f g h i j coach

a

c

b

i

h
j

e

d

g

f

coach

project
prob. p

24

25 26

30

20

21

17

23

19

18

22

28
29

27

16

12

15
13

14

110 3
4

7

6
9

8

11

2

5

juniors seniorsbasketball team

2017 19181612 1513 1411

24 25 26 3021 2322 28 29271 103 4 76 982 5

project
prob. p

three communities, D = 0.745

a

b

c

Internal groups without distinguishing features are undetectable to ALL methods

subtle structural differences are found by link communities

link communities

juniors and 
basketball players

seniors and
basketball players

Multiple relationships are found:
The link between students 18 and 20
is senior but both 18 and 20 belong to 
both seniors and basketball players!

Figure 5: Some small, illustrative examples of the subtle structural changes that link communities detect, using the bipartite
social model of [21] with p = 0.8, followed by our link communities algorithm. In (a) there are no distinguishing structural
features to separate the “subsumed” basketball team from the language class. Detecting the team is impossible for all methods.
In (b) however, a single change allows for 100% complete detection. The entire basketball team is successfully found, even
though only the coach-team links are separated. It doesn’t take much to achieve the proper node communities. (c) A more
extreme example. Class and team detection are again 100% accurate. Very subtle patterns are detectable (see, e.g., the word
association communities in main text Fig. 1f and Figs. 3, 7, 14, 15).
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